[1] LI S T, KANG X D, FANG L Y, et al. Pixel-Level Image Fusion: A Survey of the State of the Art. Information Fusion, 2017, 33: 100-112.
[2] ZHANG X C. Deep Learning-Based Multi-focus Image Fusion: A Survey and a Comparative Study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. DOI: 10.1109/TPAMI.2021.3078906.
[3] ZHANG H, XU H, TIAN X, et al. Image Fusion Meets Deep Learning: A Survey and Perspective. Information Fusion, 2021, 76: 323-336.
[4] 罗 丽,袁 真,王 珂.基于àtrous-Contourlet变换的遥感图像融合算法.模式识别与人工智能, 2007, 20(2): 248-253.
(LUO L, YUAN Z, WANG K. A Remote Sensing Image Fusion Algorithm Based on àtrous-Contourlet Transformation. Pattern Reco-gnition and Artificial Intelligence, 2007, 20(2): 248-253.)
[5] BAVIRISETTI D P, DHULI R. Two-Scale Image Fusion of Visible and Infrared Images Using Saliency Detection. Infrared Physics and Technology, 2016, 76: 52-64.
[6] WANG L, LI B, TIAN L F. EGGDD: An Explicit Dependency Model for Multi-modal Medical Image Fusion in Shift-Invariant Shearlet Transform Domain. Information Fusion, 2014, 19: 29-37.
[7] 刘 哲,宋余庆,陈健美,等.基于多分辨率的非参数正交多项式医学图像融合方法.模式识别与人工智能, 2012, 25(2): 300-304.
(LIU Z, SONG Q Y, CHEN J M, et al. A Multi-resolution Medical Image Fusion Method Based on Nonparametric Orthogonal Polyno-mials. Pattern Recognition and Artificial Intelligence, 2012, 25(2): 300-304.)
[8] LIU C H, QI Y, DING W R, et al. Infrared and Visible Image Fusion Method Based on Saliency Detection in Sparse Domain. Infrared Physics and Technology, 2017, 83: 94-102.
[9] LI H, WU X J. Multi-focus Image Fusion Using Dictionary Learning and Low-Rank Representation // Proc of the International Confe-rence on Image and Graphics. Berlin, Germany: Springer, 2017: 675-686.
[10] LIU Y, CHEN X, PENG H, et al. Multi-focus Image Fusion with a Deep Convolutional Neural Network. Information Fusion, 2017, 36: 191-207.
[11] MA J Y, YU W, LIANG P W, et al. FusionGAN: A Generative Adversarial Network for Infrared and Visible Image Fusion. Information Fusion, 2019, 48: 11-26.
[12] PRABHAKAR R K, SRIKAR V S, BABU R V. DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 4724-4732.
[13] LI H, WU X J. DenseFuse: A Fusion Approach to Infrared and Visible Images. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.
[14] XU H, MA J Y, JIANG J J, et al. U2Fusion: A Unified Unsupervised Image Fusion Network. IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 2020. DOI: 10.1109/TPAMI.2020.3012548.
[15] ZHANG H, XU H, XIAO Y, et al. Rethinking the Image Fusion: A Fast Unified Image Fusion Network Based on Proportional Maintenance of Gradient and Intensity. Proceedings of the AAAI Confe-rence on Artificial Intelligence, 2020, 34(7): 12797-12804.
[16] LI H, WU X J, DURRANI T. NestFuse: An Infrared and Visible Image Fusion Architecture Based on Nest Connection and Spatial/Channel Attention Models. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9645-9656.
[17] HAN K, WANG Y H, TIAN Q, et al. GhostNet: More Features from Cheap Operations // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 1577-1586.
[18] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely Connected Convolutional Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 2261-2269.
[19] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[20] ZHANG Y, LIU Y, SUN P, et al. IFCNN: A General Image Fusion Framework Based on Convolutional Neural Network. Information Fusion, 2020, 54: 99-118.
[21] ZHOU W, BOVIK A C, SHEIKH H R, et al. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[22] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C/OL]. [2021-04-26]. https://arxiv.org/pdf/1409.1556v6.pdf.
[23] MA J Y, CHEN C, LI C, et al. Infrared and Visible Image Fusion via Gradient Transfer and Total Variation Minimization. Information Fusion, 2016, 31: 100-109.
[24] ASLANTAS V, BENDES E. A New Image Quality Metric for Image Fusion: The Sum of the Correlations of Differences. AEU-International Journal of Electronics and Communications, 2015, 69(12): 1890-1896.
[25] HAN Y, CAI Y Z, CAO Y, et al. A New Image Fusion Perfor-
mance Metric Based on Visual Information Fidelity. Information Fusion, 2013, 14(2): 127-135.
[26] LI H, WU X J, KITTLER J. RFN-Nest: An End-to-End Residual Fusion Network for Infrared and Visible Images. Information Fusion, 2021, 73: 72-86. |